Publications


Zhang, Y., Wu, P., Xu, R., Wang, X., Lei, L., Schartup, A. T., Peng, Y., Pang, Q., Wang, X., Mai, L., Wang, R., Liu, H., Wang, X., Luijendijk, A., Chassignet, E., Xu, X., Shen, H., Zheng, S., & Zeng, E. Y. (2023). Plastic waste discharge to the global ocean constrained by seawater observations. Nature Communications, 14(1), 1372. https://doi.org/10.1038/s41467-023-37108-5
Sonke, J. E., Angot, H., Zhang, Y., Poulain, A., Björn, E., & Schartup, A. (2023). Global change effects on biogeochemical mercury cycling. Ambio, 52(5), 853–876. https://doi.org/10.1007/s13280-023-01855-y
Dastoor, A., Angot, H., Bieser, J., Christensen, J. H., Douglas, T. A., Heimburger-Boavida, L. E., Jiskra, M., Mason, R. P., McLagan, D. S., Obrist, D., Outridge, P. M., Petrova, M. V., Ryjkov, A., St Pierre, K. A., Schartup, A. T., Soerensen, A. L., Toyota, K., Travnikov, O., Wilson, S. J., & Zdanowicz, C. (2022). Arctic mercury cycling. Nature Reviews Earth & Environment, 3(4), 270–286. https://doi.org/10.1038/s43017-022-00269-w
Soerensen, A. L., Feinberg, A., & Schartup, A. T. (2022). Selenium concentration in herring from the Baltic Sea tracks decadal and spatial trends in external sources. Environmental Science-Processes & Impacts, 11. https://doi.org/10.1039/d1em00418b
Schartup, A. T., Soerensen, A. L., Angot, H., Bowman, K., & Selin, N. E. (2022). What are the likely changes in mercury concentration in the Arctic atmosphere and ocean under future emissions scenarios? Science of The Total Environment, 836, 155477. https://doi.org/10.1016/j.scitotenv.2022.155477
Peng, Y. M., Wu, P. P., Schartup, A. T., & Zhang, Y. X. (2021). Plastic waste release caused by COVID-19 and its fate in the global ocean. Proceedings of the National Academy of Sciences of the United States of America, 118(47), 6. https://doi.org/10.1073/pnas.2111530118
Stern, R. A., Mahmoudi, N., Buckee, C. O., Schartup, A. T., Koutrakis, P., Ferguson, S. T., Wolfson, J. M., Wofsy, S. C., Daube, B. C., & Sunderland, E. M. (2021). The microbiome of size-fractionated airborne particles from the Sahara region. Environmental Science & Technology, 55(3), 1487–1496. https://doi.org/10.1021/acs.est.0c06332
Schartup, A. T., Soerensen, A. L., & Heimburger-Boavida, L. E. (2020). Influence of the Arctic sea-ice regime shift on sea-ice methylated mercury trends. Environmental Science & Technology Letters, 7(10), 708–713. https://doi.org/10.1021/acs.estlett.0c00465
Zhang, Y. X., Soerensen, A. L., Schartup, A. T., & Sunderland, E. M. (2020). A global model for methylmercury formation and uptake at the base of marine food webs. Global Biogeochemical Cycles, 34(2). https://doi.org/10.1029/2019gb006348
Schartup, A. T., Thackray, C. P., Qureshi, A., Dassuncao, C., Gillespie, K., Hanke, A., & Sunderland, E. M. (2019). Climate change and overfishing increase neurotoxicant in marine predators. Nature, 572(7771), 648-+. https://doi.org/10.1038/s41586-019-1468-9
Soerensen, A. L., Schartup, A. T., Skrobonja, A., Bouchet, S., Amouroux, D., Liem-Nguyen, V., & Bjorn, E. (2018). Deciphering the Role of Water Column Redoxclines on Methylmercury Cycling Using Speciation Modeling and Observations From the Baltic Sea. Global Biogeochemical Cycles, 32(10), 1498–1513. https://doi.org/10.1029/2018gb005942
Schartup, A. T., Qureshi, A., Dassuncao, C., Thackray, C. P., Harding, G., & Sunderland, E. M. (2018). A Model for Methylmercury Uptake and Trophic Transfer by Marine Plankton. Environmental Science & Technology, 52(2), 654–662. https://doi.org/10.1021/acs.est.7b03821
Soerensen, A. L., Schartup, A. T., Skrobonja, A., & Bjorn, E. (2017). Organic matter drives high interannual variability in methylmercury concentrations in a subarctic coastal sea. Environmental Pollution, 229, 531–538. https://doi.org/10.1016/j.envpol.2017.06.008
Calder, R. S. D., Schartup, A. T., Li, M. L., Valberg, A. P., Balcom, P. H., & Sunderland, E. M. (2016). Future Impacts of Hydroelectric Power Development on Methylmercury Exposures of Canadian Indigenous Communities. Environmental Science & Technology, 50(23), 13115–13122. https://doi.org/10.1021/acs.est.6b04447
Soerensen, A. L., Schartup, A. T., Gustafsson, E., Gustafsson, B. G., Undeman, E., & Bjorn, E. (2016). Eutrophication Increases Phytoplankton Methylmercury Concentrations in a Coastal Sea-A Baltic Sea Case Study. Environmental Science & Technology, 50(21), 11787–11796. https://doi.org/10.1021/acs.est.6b02717
Li, M. L., Schartup, A. T., Valberg, A. P., Ewald, J. D., Krabbenhoft, D. P., Yin, R. S., Bolcom, P. H., & Sunderland, E. M. (2016). Environmental Origins of Methylmercury Accumulated in Subarctic Estuarine Fish Indicated by Mercury Stable Isotopes. Environmental Science & Technology, 50(21), 11559–11568. https://doi.org/10.1021/acs.est.6b03206
Sunderland, E. M., & Schartup, A. T. (2016). Mercury methylation on ice. Nature Microbiology, 1(10). https://doi.org/10.1038/Nmicrobiol.2016.165
Gosnell, K., Balcom, P., Ortiz, V., DiMento, B., Schartup, A., Greene, R., & Mason, R. (2016). Seasonal Cycling and Transport of Mercury and Methylmercury in the Turbidity Maximum of the Delaware Estuary. Aquatic Geochemistry, 22(4), 313–336. https://doi.org/10.1007/s10498-015-9283-x
Soerensen, A. L., Jacob, D. J., Schartup, A. T., Fisher, J. A., Lehnherr, I., St Louis, V. L., Heimburger, L. E., Sonke, J. E., Krabbenhoft, D. P., & Sunderland, E. M. (2016). A mass budget for mercury and methylmercury in the Arctic Ocean. Global Biogeochemical Cycles, 30(4), 560–575. https://doi.org/10.1002/2015gb005280
Ndu, U., Barkay, T., Schartup, A. T., Mason, R. P., & Reinfelder, J. R. (2016). The effect of aqueous speciation and cellular ligand binding on the biotransformation and bioavailability of methylmercury in mercury-resistant bacteria. Biodegradation, 27(1), 29–36. https://doi.org/10.1007/s10532-015-9752-3
Balcom, P. H., Schartup, A. T., Mason, R. P., & Chen, C. Y. (2015). Sources of water column methylmercury across multiple estuaries in the Northeast US. Marine Chemistry, 177, 721–730. https://doi.org/10.1016/j.marchem.2015.10.012
Schartup, A. T., Balcom, P. H., Soerensen, A. L., Gosnell, K. J., Calder, R. S. D., Mason, R. P., & Sunderland, E. M. (2015). Freshwater discharges drive high levels of methylmercury in Arctic marine biota. Proceedings of the National Academy of Sciences of the United States of America, 112(38), 11789–11794. https://doi.org/10.1073/pnas.1505541112
Ndu, U., Barkay, T., Mason, R. P., Schartup, A. T., Al-Farawati, R., Liu, J., & Reinfelder, J. R. (2015). The Use of a Mercury Biosensor to Evaluate the Bioavailability of Mercury-Thiol Complexes and Mechanisms of Mercury Uptake in Bacteria. PLOS ONE, 10(9). https://doi.org/10.1371/journal.pone.0138333
Mason, R., Balcom, P., Chen, C., Ortiz, V., Schartup, A., Seelen, E., & Sunderland, E. (2015). Biogeochemical cycling of methylmercury in estuaries. Abstracts of Papers of the American Chemical Society, 250.
Schartup, A. T., Ndu, U., Balcom, P. H., Mason, R. P., & Sunderland, E. M. (2015). Contrasting Effects of Marine and Terrestrially Derived Dissolved Organic Matter on Mercury Speciation and Bioavailability in Seawater. Environmental Science & Technology, 49(10), 5965–5972. https://doi.org/10.1021/es506274x
Schartup, A. T., Balcom, P. H., & Mason, R. P. (2014). Sediment-Porewater Partitioning, Total Sulfur, and Methylmercury Production in Estuaries. Environmental Science & Technology, 48(2), 954–960. https://doi.org/10.1021/es403030d
Mason, R. P., Schartup, A. T., Hollweg, T. A., Blacom, P. H., & Gilmour, C. C. (2013). Examining the role of sulfur in the biogeochemical cycling of mercury and methylmercury in coastal sediments through measurements and models. Abstracts of Papers of the American Chemical Society, 245.
Schartup, A. T., Mason, R. P., Balcom, P. H., Hollweg, T. A., & Chen, C. Y. (2013). Methylmercury Production in Estuarine Sediments: Role of Organic Matter. Environmental Science & Technology, 47(2), 695–700. https://doi.org/10.1021/es302566w
Schartup, A. T., Balcom, P., Chen, C., & Mason, R. P. (2013). An examination of the factors controlling net methylation in estuarine sediments: Results from measurements and models. Proceedings of the 16th International Conference on Heavy Metals in the Environment, 1. https://doi.org/10.1051/e3sconf/20130133004